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Abstract

The spectral analysis of the electromagnetic field on the background of an
infinitely thin flat plasma layer is carried out. This model loosely imitates a
single base plane from graphite and it is of interest for theoretical studies of
fullerenes. By making use of the Hertz potentials the solutions to Maxwell
equations with the appropriate matching conditions at the plasma layer are
derived and on this basis the spectrum of electromagnetic oscillations is
determined. The model is naturally split into the TE-sector and TM-sector.
Both the sectors have positive continuous spectra, but the TM-modes have in
addition a bound state, namely, the surface plasmon. This analysis relies on the
consideration of the scattering problem in the TE- and TM-sectors. The spectral
zeta-function and integrated heat kernel are constructed for different branches
of the spectrum in an explicit form. As a preliminary, the rigorous procedure of
integration over the continuous spectra is formulated by introducing the spectral
density in terms of the scattering phase shifts. The asymptotic expansion of
the integrated heat kernel at small values of the evolution parameter is derived.
By making use of the technique of integral equations, developed earlier by the
same authors, the local heat kernel (Green’s function or fundamental solution)
is also constructed. As a by-product, a new method is demonstrated for deriving
the fundamental solution to the heat conduction equation (or to the Schrodinger
equation) on an infinite line with the §-like source. In particular, for the heat
conduction equation on an infinite line with the §-source a nontrivial counterpart
is found, namely, a spectral problem with point interaction, which possesses the
same integrated heat kernel while the local heat kernels (fundamental solutions)
in these spectral problems are different.
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1. Introduction

The use of fullerenes in practical applications is increasingly important (in superconducting
techniques, in mechanical engineering for reducing friction, in medicine for drug production
and so on). Fullerenes [1, 2] are the third crystal modification of carbon. They were
first produced in the 1980s (Nobel Prize in Chemistry in 1996, R F Curl, H W Kroto and
R E Smalley). The elementary blocks of the fullerenes are the giant carbon molecules (Cgp,
C70, Cgq and larger) having the form of empty balls, ellipsoids, tubes and so on. There is a
special branch of technology, nanotechnology [3], which is based on using the fullerenes, and
especially nanotubes. In theoretical studies of the fullerenes it is important to estimate the
ground state energy (the Casimir energy) of such molecules. The carbon shells, forming the
structure of fullerenes, can be considered as infinitely thin layers, and their collective electrons
can be treated as a two-dimensional plasma layer by making use of the hydrodynamic picture
for its description. As a result, the problem reduces to the solution of the Maxwell equations
with charges and currents distributed along the surfaces modelling the carbon sheets. The
method of boundary (matching) conditions applies here, i.e., the Maxwell equations are
considered only outside the plasma layers and when approaching these sheets the electric
and magnetic fields should meet appropriate matching conditions. From the mathematical
standpoint the pertinent spectral problem proves to be well posed.

For constructing the quantum version of this model and, first of all, for a rigorous treatment
of the divergences encountered here the spectral analysis of the underlying field theory should
be accomplished; i.e., the spectrum of the dynamical system in question should be determined,
the mathematically consistent integration procedure over this spectrum should be defined and
on this basis the spectral zeta-function and heat kernels (integrated and local ones) should be
calculated as well as their asymptotic expansions under small values of the evolution parameter
should be found.

The present work is devoted to the spectral analysis of an infinitely thin plasma sheet
model with the simplest geometry; namely, the plasma layer has the form of a plane. The
spectrum of the model proves to be very rich; namely, it contains both continuous branches
and bound states (surface plasmon), and we managed to construct all the pertinent spectral
functions possessing interesting properties.

The outline of the paper is as follows. In section 2 the physical formulation of the
model under study is briefly given. In section 3 the solutions to the Maxwell equations
obeying the pertinent matching conditions at the plasma layer are constructed. The use of the
Hertz vectors for this aim proves to be very effective. Proceeding from this the spectrum of
electromagnetic oscillations in the model is found. As usual in electrodynamical problems the
model is naturally separated into the TE-sector and TM-sector. Both the sectors have positive
continuous spectra, but the TM-modes have in addition a bound state, namely, the surface
plasmon. This analysis relies on the consideration of the scattering problem in the TE- and
TM-sectors. In section 4 the spectral zeta-function and integrated heat kernel are constructed
for different branches of the spectrum in an explicit form. As a preliminary, the rigorous
procedure of integration over the continuous spectra is formulated by introducing the spectral
density (the function of the spectral shift) in terms of the scattering phase shifts. Section 5 is
devoted to the construction of the local heat kernel (Green’s function or fundamental solution)
in the model at hand. Here the technique of integral equations governing the heat kernel
to be found is used. As a by-product, a new method is demonstrated here for deriving the
fundamental solution to the heat conduction equation (or to the Schrodinger equation) on an
infinite line with the §-like source. In particular, for the heat conduction equation on an infinite
line with the §-source a nontrivial counterpart is found, namely, a spectral problem with point



Spectral analysis of a flat plasma sheet model 11029

interaction, which possesses the same integrated heat kernel. However, the local heat kernels
in these spectral problems are different. In the conclusion (section 6) the obtained results are
summarized briefly.

2. Formulation of the model

In recent papers [4, 5] Barton has proposed and investigated the model of an infinitesimally
thin two-dimensional plasma layer that is loosely inspired by considering a single base plane
from graphite or the giant carbon molecule Cgy. Effectively, the model is described by the
Maxwell equations with charges and currents distributed along the surface X:

V.B=0, V xE —iwB/c = 0, Q2.1
V .E = 478(x — X5)0, V xB+iwE/c = 478(x —xs)J/c.  (2.2)

It is assumed that the time variation of all the dynamical variables is described by a common
factor e 71,

The properties of the plasma layer (for example, plasma oscillations and screening)
differ considerably from those in bulk media [6]. In hydrodynamic approach the plasma is
considered as the electron fluid embedded in a rigid uniform positive background. Electrical
neutrality requires that the equilibrium electron charge density —en precisely cancels that of
the background. In a dynamical situation, the electron density is altered to n(x, ), and the
equation of continuity requires

z_’z +V.@mé) =0, (23)

where £(x, 1) is the electron velocity at the point x. Usually, one considers the linear response
of an initially stationary system to an applied perturbation. In this case, the induced charge
density

o(x,t) = —en(x,t) —ng), 2.4)

the velocity £, and the fields E and B are of first order. In this approximation, the continuity
equation (2.3) gives for the plasma layer

c—enyV)-£=0 or o =enyV)-§. (2.5)

The superscripts || and _L indicate here and below the vector components respectively parallel
and normal to the surface X.
For the induced charge current J we have

J = —enp€ = iewnyk. (2.6)

Newton’s second law applied to an individual electron gives
e

mé(x, 1) = —e E|kx,1), X €E X, or &= E,. 2.7

maw?
Finally, the induced-on-the-surface charges and electric currents are determined by the parallel
components of electric field

2 2

g = —2V|| . E”, J=1— EH' (28)
maw maw

As is known [7], electromagnetic field, generated by charges and currents with singular
densities is described mathematically in the following way: outside the singularities the
Maxwell equations (2.1), (2.2) without sources should be satisfied,



11030 M Bordag et al

V.-B=0, V X E —iwB/c =0, 2.9)
V.-E=0, VxB+iwE/c =0, X¢ X, (2.10)
and when approaching at singularities the limiting values of the fields should meet the matching
conditions determined by the singular sources. In the regions of singularities the Maxwell

equations are not considered. The singular charges and currents on the right-hand side of the
Maxwell equations (2.2) lead to the following matching conditions:
[Ej]=0, [E1]=2q(c/w)*V - E|, (2.11)
[B.]1=0, [B)] = —2ig(c/w)n x E;. (2.12)
Here ¢ is a characteristic wavenumber ¢ = 2mne®/mc?, the square brackets [F] denote the
discontinuity of the field F when crossing the surface ¥, and n is a unit normal to this surface
usually used in formulation of matching conditions [7].

The physical origin of the model leads to a Debye-type cutoff K on the surface-parallel
wavenumbers of waves that the fluid can support. However, if one digresses from this cutoff
then the Maxwell equations (2.9) and (2.10) with matching conditions (2.11) and (2.12) can
be regarded as a local quantum field model that is interesting in itself. First of all, the question
arises here concerns the analysis of divergences. As is known [8—13], to this end one has to

calculate the heat kernel coefficients for the differential operator garnering the dynamics in
this model (see equations (2.9)—(2.12)).

3. Solution to the Maxwell equations for a flat plasma sheet

When constructing the normal modes in this problem it is convenient to use the Hertz potentials
[7, 14, 15]. In view of high symmetry of the flat plasma layer the electric (E) and magnetic
(B) fields are expressed in terms of electric (IT") and magnetic (IT”) Hertz vectors possessing
only one nonzero component
Il = e, ®d(z), I’ = e, e®W(z). (3.1)
Here the plasma layer is taken as the (x, y) coordinate plane, the z-axis is normal to this plane,
k is a two-component wave vector parallel to the plasma sheet and s = (x, y); e, e,, and e,
are unit base vectors in this coordinate system. The common time-dependent factor e 7'’ is
dropped.
For given Hertz vectors IT" and I1” the electric and magnetic fields are constructed by the
formulae

E=V xV xII, B = —iQV x IT"  (TM-modes, B, = 0), 3.2)
c
E= igV x II”, B=V xV xII" (TE-modes, E, = 0). 3.3)
¢
Substituting here IT" and I1” from equation (3.1) one obtains for the TE-modes
E = (—kye, +kye,) = e®w(z), (3.4)
c
B = i(k.e, +kye,) e™ W (2) + ek ™V (z) (3.5
and for the TM-modes
E = i(k.e, +kye,) e™d'(2) + e.k? ™D (2) (3.6)
@ ks
B = (kye, — kye,) = ™ d(z). 3.7)
c

The fields (3.4)—(3.7) will obey the Maxwell equations (2.9) and (2.10) outside the plasma
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layer (z = 0) when the functions e**® (z) and e’**W (z) are the eigenfunctions of the operator
(—A) with the eigenvalues w?/c? (A is the three-dimensional Laplace operator):

2

—Aed(z) = a)_2 e®SP(z), (3.8)
Cc

—AMU(2) = — MU(2). (3.9)
C

We deduce from here

w?
—®"(2) = (—2 - k2> ®(2), (3.10)
c
" a)Z 2
-V (z) = (—2 —k ) W(z), 3.11)
c
—00 < 7 < 00, z#0, 0§k2<oo.

The substitution of the fields (3.4)—(3.7) into the matching conditions (2.11) and (2.12)
gives the analogous conditions at the point z = 0 for the functions ®(z) and V(z),

2
[@O1=-2(>) @0,  [@©O]1=0. (3.12)

[(V(0)] =0, [W'(0)] =29V (0), (3.13)

where the following notation is introduced:
[F(2)]=F(z+0)— F(z —0). (3.14)

The matching conditions (3.12) are very specific. They involve the eigenvalues of the
whole initial spectral problem (3.8). It implies, specifically, that the dynamics of TM-modes
along the z-axis ‘feels’ the parallel dimensions (x, y). Thus for the TM-modes the initial
spectral problem does not factorizes completely into two independent boundary value problems
along the z-axis and in parallel directions.

In order to complete the formulation of the boundary spectral problems (3.10)—(3.13) we
have to specify the behaviour of the functions ®(z) and W(z) when |z| — oo. Proceeding
from the physical content of the problem in question, we shall consider such functions ®(z)
and W (z) which either oscillate (p?> = w?/c?> — k* > 0) or go down (k? = k*> — w?/c* > 0)
when |z| — oo. In the first case, we deal with the scattering states and in the second one the
solutions to the Maxwell equations describe the surface plasmon?.

The spectral problem for the TE-modes (3.11) and (3.13) with the respective boundary
conditions is a self-adjoint spectral problem. Substituting the TE-fields (3.4) and (3.5) into
the initial Maxwell equations with §-sources (2.2) we arrive at the equation for W (z) with the
§-potential (instead of equation (3.11))

2
—W(2) +208(2)W (2) = pPV(2), % =K+ p2. (3.15)
Integration of this equation in vicinity of the point z = 0 leads to the matching conditions (3.13)
(see, for example, [21]). The potential in equation (3.15) is equal to 2¢46(z). As mentioned

3 In electrodynamics of continuous media the surface plasmon is a special solution to the Maxwell equations which
describes the electric and magnetic fields exponentially decreasing in the direction normal to the interface between
two material media [16—18]. The plasmon solution exists only in the TM-sector. It is these configurations of an
electromagnetic field that contribute to the Casimir force between two semi-infinite material media [19, 20].
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above, the spectral problem for the TM-modes (3.10), (3.12) possesses a peculiarity, namely,
the matching conditions (3.12) involve the eigenvalue w/c. Obviously, the self-adjointness
condition is not satisfied here.

The scattering problem for the functions ®(z) and W(z) is formulated on a line:
—00 < z < 0o. As is known [22, 23], the one-dimensional scattering problem has features in
comparison with the description of the scattering processes in three-dimensional space.

The scattering states for the TE-modes are described by the functions

W(z) = Cr e+ Cre %, 7<0, (3.16)

w?

W(z) = C3e, z>0, p>0, = = k2. (3.17)

The initial wave is coming from the left. Matching conditions (3.13) give the following
relation between the constants C; (i = 1, 2, 3):

Ci+Cy = G, (3.18)
ip(C3 — C1 +Cy) = 2qCs. (3.19)

From here we obtain for the reflection and transmission coefficients
_ G -qg
— =isinne",

e TE = P _cosne,  (3.20)
Cyq p+ig

ptiq
where 1(p) is the phase shift for the scattering of the TE-modes. When initial waves are
coming from the right we obtain the same reflection and transition coefficients. There are
no other conditions on p besides the positivity p > 0 (continuous spectrum). The scattering
matrix, S(p), is determined by the phase shift n(p),

RTE

tann(p) = —g, p>0, (3.21)

in a standard way
S(p) = X, (3.22)
Between TE-modes there are no solutions which go down when |z| — oo. Indeed, such
solutions, in accord with equation (3.11) would have the form

Y(z) = Ci €%, z <0,

/ 2 (3.23)
V(z) = Cre ™%, z >0, K=+ kZ_w_z -~ 0.
c

Substitution of equation (3.23) into the matching conditions (3.13) gives
Ci=GC and k=—q <0. (3.24)

Thus, there are no solutions of the form (3.23) with positive x. This is in accord with the
known fact [21] that the potential defined by the Dirac §-function A§(z) leads to the bound
state only for A < 0. In our case . = 2g > 0 (see equation (3.15)).

Finally, the TE-modes have the spectrum

2
(K,
# — %+ p?, k € R?, 0< p < oo. (3.25)
1
Here the contribution k2 is given by the free waves propagating in directions parallel to the
plasma layer, and the contribution p? corresponds to the one-dimensional scattering in normal

direction with the phase shift (3.21).



Spectral analysis of a flat plasma sheet model 11033

Proceeding in the same way one obtains for the scattering of the TM-modes
ipq p*+k?

RM=_ 21 — _jsinpe, TM= _ 2~ —cospe, 3.26
P2 +k2+ipg o p?+k*+ipg a (3:20
where the phase shift w(p, k) is defined by
pP4q
t k)= ————, > 0. 3.27
anu(p, k) i P (3.27)

The scattering matrix is defined here by the formula analogous to equation (3.22): S(p, k) =
e2in(p.k)

It turns out that between TM-modes there are solutions which not only oscillate when
|z] — o0, but also go down in this limit. In this case, the function ®(z) is defined by the
equation

w?
P(z) — <k2 - c_2) ®(z) =0, (3.28)
where
w2
K- —=x>>0. (3.29)
c
The solution we are interested in should have the form
(I)(Z) = C1 e"z, < 0,
O(z) = Cre %, z >0, (3.30)

where ¥k = +,/k? — w?/c? > 0. The matching conditions (3.12) give rise to the equation
for k.,

K> +kg —k*>=0, (3.31)
the positive root of which is

2
q q
=,/ =4k - Z. 3.32
K ,/4+ 5 (3.32)

For the respective frequency squared we derive by making use of equation (3.29)
2

P _ 9 Jg 4k —q) > 0. (3.33)

c2 2
Thus, the frequency of the surface plasmon is real, and the solution obtained oscillates in time
instead of damping.
Finally, the spectrum of the TM-modes in the problem under study have two branches: (i)
the photon branch and (ii) the surface plasmon branch. The photon spectrum of TM-modes is
defined by

Bk, p)
c2
Here the contribution k2, as in equation (3.25) is given by the free waves propagating in
directions parallel to the plasma layer and p? is the contribution of the one-dimensional
scattering with the phase shift (3.27) in normal (to the plasma sheet) direction. The surface
plasmon branch of the spectrum is described by

2 (k
%o _ L 4 —q).  keR (3.35)

c
In the spectral problem (3.10), (3.12) with negative ¢ the parameter « defined by

equation (3.32) is positive, however the respective frequency squared is negative
2

w; 1
Zzo = —E(qz +1q1v/q? +4k2). (3.36)

Hence, in this case we have a resonance state instead of the bound state (surface plasmon).

K+ p?, keR?, 0<p<oo. (3.34)
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4. Spectral functions in a flat plasma sheet model

In the previous section, we have determined the spectrum in the model under consideration
(see equations (3.25), (3.34) and (3.35)) therefore we can proceed with the construction of the
spectral functions in this model; namely, the spectral zeta-function

() =TrL™ =) A" 4.1

and (integrated) heat kernel
Kt)=Tre™) =) e, (4.2)

where L is the differential operator in equations (3.10) and (3.11) with matching conditions at
z = 0(3.12), (3.13) and conditions specified above for |z] — o0; A, are the eigenvalues given
by equations (3.25), (3.34) and (3.35). In equation (4.2) ¢ is an auxiliary variable, 0 < t < oo.
In our case L = —A and ¢ has the dimension [length]2.

As a preliminary, it is worth stipulating the procedure of spectral summation entered
equations (4.1) and (4.2). Obviously, the contribution to the spectral functions generated by
free waves is given by a simple integration over the respective wave vector k:

/ &’k _/ kdk 43
W..._ ) EmEEE 4.3)

We define the contribution of the scattering states by making use of the phase shift method;
namely, the integration over d p will be carried out with the spectral density p(p) (the function
of spectral shift),

1 d d
p(p) = ——1 S(p) = ——5(17) “4.4)

where §(p) is the phase shlfts for TE- and TM-modes given by equations (3.21) and (3.27),
respectively.

4.1. TE-modes

Taking into account all this we get, for the spectral zeta-function in the TE-sector of the model,
d’k [ q © dp ©  kdk
cTE<s>=f—2/ dp(k + p) s——n(p) I - 2/ L.
(2m)* Jo 2n* Jo p*+q°Jo  (k°+po)
4.5)
The left-hand side of equation (4.5) is defined in the semi-plane Res > 1 and this
representation can be analytically extended all over the complex plane s saved for separate

points. In order to do this, it is sufficient to express the integrals in equation (4.5) in terms of
the gamma-function

g7 F(3 2—5)T(s —1/)T(s = 1) 2
;TE( ) = / / q . (4.6)
I'(s) ~ 8n(1 —s)cos(s)
The mtegrated heat kernel for TE-modes is given by
K™ =K' @) - K=V ), 4.7

where K (()d:Z) (¢) is the free two-dimensional heat kernel responsible for free waves propagating
in directions parallel to the plasma layer

_ * kdk > 1
K= :/ i 4.8
0 @ 0o 27 ¢ At (4.8)
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1 [ d © et _
K(d:”(t) = _/ dp e*f’z’— arctan (_Z) = Z/ 2 2 dp
T Jo dp p TJo Pty

= % e[ — erf(g/1)] = % ' erfe(g /1), 4.9)

and

where erf(g+/1) is the probability integral [24, 25].

In the plasma sheet model under consideration the parameter ¢ is strictly positive.
However, the spectral problem (3.15) can be considered for the negative g also when it
possesses a bound state [21]. The contribution of this state should be taken into account
when calculating the respective heat kernel K, _o(¢). But this heat kernel can be obtained by
analytical continuation of equation (4.9)

Ky<o(t) = L& [1 —erf(~|g|VD)] = L e [1 +erf(lg V)] (4.10)

Comparison equations (4.9) and (4.10) give the following simple relation between the
integrated heat kernel for §-potentials with positive and negative coupling constants

Kyoo(t) + Kyoo(t) = €', 4.11)

where K, .o(?) is given by equation (4.9).
The structure of divergences in quantum field theory is determined by the coefficients of
the asymptotic expansion of the heat kernel when ¢ — +0,

K@) = @rn™"? 3" "B, +ES, (4.12)
n=0,1,2,...

where d is the dimension of the configuration space in the problem at hand, ES stands for the
exponentially small corrections. The coefficients B,,, for TE-modes can be derived in two
different ways: (i) by making use of equations (4.7)—(4.9) which determine the heat kernel
explicitly and (ii) by applying the known relation between the residua of the product ¢ (s)I"(s)
and B, »:

B, . n—d
)i =SE% <s+ 5 )F(s){(s), n=012,.... 4.13)
Both calculation schemes give the same values for the coefficients B, > with n # 0:
4
Bijp =47, By = —2q, Bsp = /7q%, By =—--q°,
3
4.14)
Bsp = Y gt By= -2 g By = Y40
5/2 = 261, 3= 1561, 72 = 6q’
Equations (4.7)—(4.9) give for the coefficient By
By =0, (4.15)
while employment of the zeta-function (4.5) and relation (4.13) leads to the nonzero value
1
By = ——. (4.16)
q

The different values of By in equations (4.15) and (4.16) are the consequence of the
noncompact configuration space, R?, in the problem at hand. In the case of compact manifolds
the coefficient By is equal to the volume V of the manifold: By = V. Definition of By for a
noncompact configuration space requires a special consideration [27, 26]. The correct value
of By in our case is formula (4.15) derived from the explicit heat kernel (4.7)—(4.9). The point
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is, the contribution of unbounded space R is subtracted from the spectral density (4.4). Hence
this contribution is subtracted also from the multiplier K “~V(¢) in equation (4.7) and, due to
the factorization of this formula, the contribution of R3is automatically subtracted from the
total kernel K ().

When calculating the zeta-function £ TE(s) the spectral density (4.4) with subtracted R?
contribution has also been used. However in equation (4.5), unlike equation (4.7), there is
no factorization of the contributions of waves propagating in directions parallel to the plasma
plane and in the direction normal to this plane. It is this point that leads to a nonzero value of
By in equation (4.16).

4.2. TM-modes

In the case of TM-modes there are two branches of the spectrum: (i) the photon branch (3.34)
and (ii) the surface plasmon branch (3.35).

By making use of equations (3.27) and (4.4) we obtain for the photon zeta-function in the
TM-sector of the model

&’k [ 1d
™ _ 2 2y—s
Con (S)_/—(Zn)2/0 dp(k”+ p) n—dpu(p,k)

:L/Ookdk/oo d Pk 4.17)
272 Jo o (k*+p?)* (k> +p?)?+q*p?
The integration in (4.17) can be easily done by introducing first the polar coordinates
k =rsing, p =rcosg, dkdp = rdrdey, 4.18)
0< o <m/2, 0<r<oo.
In terms of new variables, formula (4.17) acquires the form
/2 r> 2 sing(2cos? ¢ — 1
cM(s) = F d(p/ - f; s Z ). (4.19)
Now it is natural to make the followmg substitution of the variables:
cosp = X, —sin¢g dp = dx. (4.20)
As aresult one gets
P22 dr
/ dx(2x? — 1)/ > 4.21)
r? + q%x?
The integral over r in (4.21) exists in the region
1/2 < Res < 3/2, (4.22)
and the subsequent integration over x can be done for
1/2 <Res < 1. (4.23)

Thus the integral representation (4.21) can be analytically extended all over the complex s
plane. This yields

2 2s s q2725 s
ra/nR2—-—s)r(s—1/2) = .
8 2 (s—D@2-y¥ 87 (1 —s)2—s)cosms

(4.24)
Let us proceed with the construction of the heat kernel for the photon branch of the

spectrum in the TM-sector of the model at hand. By making use of equations (3.34), (4.2),
(4.3) and (4.4), we obtain

OE

p2_k2

—_— 4.25

o0 o0
KM@ = == | kdke™" / dpe 7"
0
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Further, we again introduce the polar coordinates (4.18) and then make the change of variables
(4.20). Finally, calculations are reduced to the substitution of the term »~* in equation (4.21)
by e,

1
KM@ = % /0 dx(2x? — 1)1 (x), (4.26)

where

o) /oo r2erlt d 1 |m  mgx qzxzt[l rf( \/;)]
X) = —= dr = —- - € —¢€ X
o rr+g3x? 2V ¢ 2 9
_ [ omax | e 2 N 2V
2V ¢ 2 ﬁk:o QRk+ DIl |

We have used here the series representation for the function erf(gx+/7) [24, 25].

Equations (4.13) and (4.24), on the one hand, and the explicit form of the heat kernel,
equations (4.26) and (4.27), on the other hand, give the same value for the coefficients B, in
expansion (4.12) for all n saved forn = 0, 1:

4.27)

2 4 5
B =34 Bs;» =0, 32=Eq ,
. (4.28)
T b3
Bs, = —~—¢"*, By = —q’, By = —~—4°.
6 35 12

The explicit form of the integrated heat kernel in question, (4.26) and (4.27), shows that first
two coefficients in expansion (4.12) vanish while formulae (4.26) and (4.27) give

3
By = ~7 By = /7. (4.29)

This discrepancy implies that calculation of the first heat kernel coefficients through the
respective spectral zeta-function requires a special consideration in the case of unbounded
configuration space.

Let us address now the spectral functions for the spectrum branch (3.35) generated by the
surface plasmon. Equations (3.35), (4.1) and (4.3) give

2 ,725 k s 00
csf)M(s)=f ’k @y, ( )=<g> /0 @( PR —q) . 430)

(2m)?2 % q 27
The convergence of this integral in the region k — 0 requires Res < 1, but when k — oo
it exists only if Res > 2. Thus for the spectrum (3.35) it is impossible to construct the
zeta-function by making use of the analytical continuation method, since one cannot define
this function in any finite domain of the complex plane s.
However, it turns out that for this branch of the spectrum the heat kernel can be constructed
explicitly. Indeed, by making use of equations (4.2), (4.3) and (3.35) we obtain

2 2 (K )
K;M(t) = / _(;7[1;2 exp |:—wbp( )t:| = / kdk exp [—%(\/qZ +4k% — q)t:l . (4.31)
0

c2

The change of variables

%(\/ 24— q) =x, kdk=(1+l) dx

reduces the integral (4.31) to the form

®dx (x 1 1 1
KM :/ — | =+=)e = —=oHr . 4.32
» O 0 27T<512+2)e (332
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The first term in equation (4.32) is absent in the standard expansion (4.12), and the second
term in (4.32) yields By, = 2./7. The rest of coefficients B, ,2 with n # 1 equal zero. Thus
the surface plasmon with the spectrum (3.35) is a simple (and at the same time, of a physical
meaning) model that has no spectral zeta-function, but the respective (integrated) heat kernel
exists though with a nonstandard asymptotic expansion. It is not surprising because we are
dealing here with a singular point interaction described by the matching conditions (3.12).

5. Local heat kernel

In the TE-sector of the model under consideration one can construct, in an explicit form, the
local heat kernel or Green function

K(r.rsn) =(rler) =" gime, ) e (5.1

We are using here the same notation as in equation (4.2) and ¢,(r) are normalized
eigenfunctions in the spectral problems at hand

Lo, (t) = hnpn(r) L=-A. 5.2)

From the definition (5.1) it follows, in particular, that the local heat kernel obeys the heat
conduction equations with respect to the variables (r, t) and (1, t)

ad
(Ar — 5) K(,r';t) =0, (5.3)
a /
Ay —— K@, r;t)=0 5.4
ot
and initial condition
K@, r';t) = 8(r—r), when t— 0%, (5.5)
Obviously, in the case of TE-modes K (r, r’; ) can be represented in a factorized form
K, v';0) =K, 850 K(z,250), r=(s,2), s=(x,y), (5.6)
where K(()d:2) (s, §'; 1) is the free heat kernel in directions parallel to the plane z = 0:
_ 1 (s —8)?
K9, 85 1) = — —_——. 5.7
o (5830 4t xp 4¢ 5.7)

For constructing the heat kernel K (z, z; t) along the infinite z-axes we shall use the
technique of integral equations developed in our previous paper [28]. These equations naturally
arise when representing the Green function to be found in terms of heat potentials of simple
and double layers. With respect of its first argument z the heat kernel K (z, 7’; t) obeys the
matching conditions (3.13) and when ¢+ — 07 it satisfies the initial condition (5.5).

In what follows, it is convenient to represent the heat kernel we are looking for in terms
of four components depending on the range of its arguments,

K_i(z,7;1), z<0, 7z >0,
K. (z,751) 7,7 >0
K ’. _ +\Z,251), , s .
(@ 251) K, (z,7;1), z>0, 7/ <0, (5-8)

K__(z,7;1), z,7 <O.
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We represent the heat kernel K (z, z'; t) in terms of heat potentials of simple layers [28]

t
K_i(z,7;1) = / dtKo(z,0; r — D)y (7; 2), 7<0, >0, (5.9
0

t
Kii(z,7Z'51) = Ko(z, 2’5 1) +/ dtKo(z,0; 1 — T)oa (73 2), 72,7 >0, (5.10)
0

where a1 (t; z') and a,(1; 2’) are the densities of the heat potentials to be found and K(z, z'; t)
is the free heat potential (Green’s function) on an infinite line

1 (z—2)?

Substituting equations (5.9) and (5.10) in matching conditions (3.13) we obtain

Ko(z,7';1) =

t
/ drKo(0,0; t — )[a1(1; 2') — aa (75 2)] = Ko(0, 25 1), 7 >0, (5.12)
0

K !
28_10(Z =0,7;1t) — 4qf drKp(0,0;t — Dai(t; 7)) = a1(t; 2) + o (7 2, 7 > 0.
0
(5.13)

When deriving equation (5.13) we have taken into account that the derivative of the single
layer potential has a jump at the interface; namely, let V (z; ¢) be the heat potential of a single
layer with the density v(7),

t
Viz;t) = / dtKo(z,0;t — T)v(7), (5.14)
0
then one can easily show that [28, 29]
aVv 1 A% 1
—(z=0%1)=—=v(), — (=071 = -v(@). 5.15
3z (z ) 2V() 32 (z ) 2V() (5.15)

On substituting in equation (5.12) the explicit form of the free heat kernel (5.11) we arrive
at the Abel integral equation, the exact solution of which is known [30, 31], or can be derived
by the Laplace transform

2
Z Z
a1(t;2) —oa(t; 7)) = ———=e€x (——), z>0. (5.16)
: ? 1At P4
In what follows, it is convenient to apply to equations (5.13) and (5.16) the Laplace transform
o0
[ =/ e P f(n)dr. (5.17)
0

As a result, we obtain the set of two linear algebraic equations for the functions &; (p; z’) and
a(p; 2):

ai(p;2) —ar(p;7) =e VP, 7 >0, (5.18)

’ 2
aj(p;7) +an(p;7) =e ¥VP — —q&l(p; 7, 7 > 0. (5.19)
NI

From here we deduce

\/ﬁ —'/p — / q —7 ’
— e V7, ar(p;7) =— e IVP 7 > 0. (5.20)
q+.p q+.p

a(p;z) =
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By making use of the Laplace transform (5.17) the initial formulae (5.9) and (5.10) can be
rewritten in the form

_ 1
K 7:p) =3 ¥ e *VPay(p; 2), 2<0, 7 >0, (5.21)
K (z,7:p) = Le*‘zlel*/’7’+ 1 e VPa,(p; 2) 7,7 > 0. (5.22)
9 b zﬁ zﬁ b b b
Substitution of equation (5.20) into equations (5.21) and (5.22) yields
- 1 A
K (2,7 p) = 7 e VP, z<0, 7>0, (5.23)
IR TV
_ 1 , q ,
Kz, 2 p)=——e F7IWP o L o= @Vp, 2,7 > 0. (5.24)
" 2P 2/P(q +/P)

The inverse Laplace transform [25, 32] applied to equations (5.23) and (5.24) gives

, +7

K_.(z,7;1) = Ko(lz| + 2/, 0: 1) — 9 a2t grfe (q\/;+ 2l +2 ) , z<0, >0,
2 2.1

(5.25)

, +7
Koz, 21 1) = Ko(z. 25 1) — L et terf (qﬁ+ Lre ) , 2,7 > 0. (5.26)
2 N/

By making use of the same technique one can derive for the components K, _(z, 7’; t) and
K__(z,7'; t) the formulae which are analogous to equations (5.25) and (5.26). It turns out
that all four components of the heat kernel K (z, z’; t) (see equation (5.8)) can be represented
in a unique way, namely,

, +|7
K@Anzmmzm—%%“”#w&@ﬁ+m'“)

2Vt

—o00<z, 7 <oo, z#0, 7 #0. (5.27)

In the literature [33, 34] the fundamental solutions to the heat conduction equation or to the
Schrodinger equation with the Dirac §-potential are represented, as a rule, in an integral form

o0
K(z,7;t) = Ko(z,7;1) — q / e " Ko(|z| + 12| + u, 0; t) du. (5.28)
0

It is worth noting that the formulae (5.27) and (5.28) have the sense also at the points z = 0
and 7' = 0.

Thus the technique of integral equations developed on the basis of heat potentials in [28]
affords a regular and simple method for deriving, in an explicit form, the heat kernel in the
problem under consideration. In [35] the representation (5.27) was obtained in the framework
of another approach to this problem.

Proceeding from equation (5.28) one can easily obtain the traced heat kernel (4.9) by
evaluating the integral

mn=/ Az [K (z, 2 1) — Ko(z, 22 1)]

(o]

) 00
= —q/ dz/ due Koz +u, 0; 1). (5.29)
—00 0
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Substitution to this equation of the exact form of the free heat kernel (5.11) gives

q o0 /°° B |: (2z+u)2]
Kit) = —— dz due exp| ———
(3] ’_nt/o A p 4
o0

q _ u
= —= due erfc| — |. 5.30
2/0 ¢ (2«/?> 30

Thus, in order to find the integrated heat kernel K () one has to calculate the Laplace transform
of the function erfc(u/(2+/7)). By making use of the table of the Laplace transform [32] one
finds

K1) = e erfe(gv/t) — 1. (5.31)

The first term on the right-hand side of equation (5.31) exactly reproduces equation (4.9) while
the constant term (—1/2) should be removed by introducing appropriate renormalization when
calculating the trace over the continuous variables.

In the TM-sector of the model under study the construction of the local heat kernel proves
to be much more complicated. First of all, the factorization equation (5.6) does not hold
anymore. However, the technique of integral equations [28] can be applied here again, but
the pertinent integral equations will be defined on the whole plane z = 0; i.e., they are two-
dimensional integral equations. In order to go along this line, preliminarily one has to remove
the dependence on the spectral parameter (w(p,K)/c)? from the first matching condition
(3.12). For the heat kernel K (r, r; t) this condition can be transformed as follows,

K ) IK )
—(s5,z2=0,r;t) | =2g— (5,2 =0,1";1), (5.32)
ot 0z

where the notations r = (s, z), s = (x, ¥), and (3.14) are used as before.
The validity of this relation can be checked easily if one takes into account that the

eigenfunctions ¢(r) e~*' entering the definition of the heat kernel (5.1) obey equations (5.3)
and (5.4)
d
—Ag,(X) e = g, () e = —Ewn(r) e M. (5.33)

Here the eigenvalues A, are equal to (w(p, k) /c)?. The matching condition (5.32) involves
the space and time derivatives, i.e., the so-called skew derivative.

The Green function K (r, ’; t) obeys the heat conduction equations (5.3) and (5.4), hence
the matching condition (5.32) can be obviously rewritten in the form

K
[ArK (5.2 =0.x: )] =2g~ (5.2 = 0. 1). (5.34)
Z

An interesting spectral problem arises here when we confine ourselves to the one-
dimensional problem with (w(p)/c)? = p*:

2
_j_zz"’(Z) = p?0(2), —00 <z <00, z#0, (5.35)
[¢'(z=0)]=0, (5.36)
[¢"(z = 0)] = 2q¢'(z = 0). (5.37)

At first sight, this spectral problem is completely different from the analogous one for the
d-potential (see equations (3.11), (3.15) and (3.13)). However, the respective eigenfunctions
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¢, (z) and @ ,(z) are connected by the relation

9,(2) = @,(2). (5.38)
Both problems have the same positive continuous spectrum
0< p2 < 00. (5.39)

Furthermore, the respective phase shifts, and consequently the scattering matrices, coincide
(see equations (3.21) and (3.23) with k = 0). From here we infer immediately that these
spectral problems have the same integrated heat kernels defined by equation (4.9), while the
local heat kernels are obviously different.

The local heat kernel for the spectral problem (5.35)—(5.37) can be derived in the same
way as has been done above in the spectral problem with §-potential by making use of the
integral equations.

As far as we know, a couple of spectral problems possessing such interesting features are
found for the first time.

6. Conclusion

The plasma sheet model investigated here proves to be very interesting and instructive, first
of all from the standpoint of spectral analysis. The spectrum of the model contains both
continuous branches and bound states (surface plasmon). It is remarkable that for the latter
the spectral zeta-function cannot be constructed at least by the standard analytic continuation
method. At the same time, the integrated heat kernel is found in an explicit form for all
branches of the spectrum. On the whole, this heat kernel has the asymptotic expansion of a
noncanonical form due to the singular point interaction.

By making use of the technique of integral equations developed by us earlier [28] the local
heat kernel in the TE-sector of the model is found in an explicit form. By the way, here a new
method is demonstrated for deriving the fundamental solution to the heat conduction equation
(or to the Schrodinger equation) on an infinite line with the §-like source. In principle, the
integral equations technique is also applicable to the construction of the local heat kernel in
the TM-sector of the model.

For the heat equation on an infinite line with the §-source a nontrivial counterpart is found;
namely, a spectral problem with point interaction, which possesses the same integrated heat
kernel. However, the local heat kernels in these spectral problems are different. The new
boundary problem is not self-adjoint, the matching conditions at the singular point can be
represented in two forms: (i) by an equation containing the spectral parameter, or (ii) by an
equation with second spatial derivative (or the first time derivative). As far as we know, such
a couple of spectral problems are found for the first time.

Thus the spectral analysis of the model under consideration is accomplished in full.

Without question, the spectral analysis of the same model describing the plasma layer of
other forms, for example, circular infinite cylinder or sphere, is also of interest.
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